Highly Stereoselective Synthesis of Perhydro-8a-(hydroxymethyl)-phenanthrene-1,2,4,5,7,8-hexol and Derivatives

Hervé Mosimann and Pierre Vogel*
Section de chimie, University of Lausanne BCH, CH-1015 LausanneDorigny, Switzerland

Alan A. Pinkerton and Kristin Kirschbaum

Department of Chemistry of the University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606

Received December 12, 1996

Diterpenes of the type tetradecahydrophenanthrene with cis,trans,cis ring junctions are very rare natural compounds. The compounds α-dictalediol monoacetate (1) ${ }^{1}$ and β-dictalediol monoacetate (2) ${ }^{2}$ were isolated from a brown algae of the genus Dictyota, the extracts of which exhibit cytotoxic, antibacterial, and antiviral activities. ${ }^{1}$ We wish to disclose here a highly convergent synthetic approach to cis,trans,cis-perhydrophenanthrene ring systems bearing up to six alcoholic moieties (with three different kinds of protective groups) and one angular oxymethyl substituent, ${ }^{3}$ making them analogues of 1 and 2. ${ }^{4}$ The method is based on the stereoselective DielsAlder cyclodimerization of 2-vinyl-7-oxabicyclo[2.2.1]hept-2-ene derivatives ${ }^{5}$ and subsequent chemoselective ethereal ring opening of the two 7-oxabicyclo[2.2.1]heptane moieties.

1

2

The bromoalkenol 4, derived from 7-oxabicyclo[2.2.1]-hept-5-en-2-one (3) in three steps, ${ }^{6}$ underwent a Sonogashira coupling ${ }^{7}$ with ethynyltrimethylsilane ([Pd($\left.\mathrm{PPh}_{3}\right)_{4}$]/Cul as catalyst) in DMF ($50^{\circ} \mathrm{C}, 4 \mathrm{~h}$), giving 5 (79\%). Reduction of $\mathbf{5}$ with zinc activated by KCN ${ }^{8}$ afforded diene 6 (88%). When heated to $55^{\circ} \mathrm{C}(120 \mathrm{~h})$, a 37% solution of 6 in $\mathrm{CH}_{3} \mathrm{CN}$ furnished one single cy-

[^0]clodimer $\mathbf{7}$ isolated in 61% yield. The structure of $\mathbf{7}$ was assigned from 2D ${ }^{1} \mathrm{H}$ NMR spectra (COSY, NOESY). It was further confirmed by oxidation (Dess-Martin periodinane) into the known diketone $8 .{ }^{5}$ Acetylation ($\mathrm{Ac}_{2} \mathrm{O} /$ pyridine/DMAP) of diol $\mathbf{7}$ provided the diacetate 9 (98\%), the vinyl group of which could be oxidized chemoselectively with $\mathrm{NaIO}_{4} / \mathrm{OsO}_{4}$ in aqueous dioxane, ${ }^{9}$ giving the aldehyde $\mathbf{1 0}(57 \%)$. Reduction of $\mathbf{1 0}$ with NaBH_{4} in $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ foll owed by esterification with $\mathrm{Ac} 2 \mathrm{O} /$ pyridine furnished 11 (77\%).
With the goal of carrying out chemoselective oxa-bridge openings, we treated $\mathbf{1 1}$ under various acidic conditions with the hope of quenching intermediate allylic cations derived from the 2 -methylidene 7 -oxabicydo[2.2.1]heptane moiety. Unfortunately, we did not find conditions under which aromatization was avoided. With $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$, a mixture was obtained from which the styrene derivative 12 was isolated in 36% yield. Using Me3SiOTf, the same compound was obtained in 75% yield. Hydrogenation ($\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}, \mathrm{AcOEt}$) of $\mathbf{1 2}$ afforded $\mathbf{1 3}$, which underwent a smooth $\mathrm{S}_{\mathrm{N}} 2$-type heterolysis of the ethereal bridge on heating with $\mathrm{HBr} / \mathrm{AcOH}\left(55^{\circ} \mathrm{C}, 18 \mathrm{~h}\right)$, giving bromide 14 (80\%). In this case, the less hindered bridgehead center of the 7 -oxabicyclo[2.2.1]heptane system is attacked by the bromide anion. ${ }^{10}$ Interestingly, treatment of $\mathbf{1 3}$ with $\mathrm{BBr}_{3}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2},-20{ }^{\circ} \mathrm{C}\right)$ resulted in oxa-ring opening without incorporation of bromine. Workup with water gave instead the diacetate $\mathbf{1 6}$ (69\%), suggesting that the ether deavage is assisted by the endo acetoxy moiety with formation of an intermediate of type 15. Intermediate 15 subsequently reacts with water and gives $\mathbf{1 6}$ selectively. ${ }^{11}$ The diacetate 16 was deprotected by methanolysis ($\mathrm{MeOH} / \mathrm{NH}_{3}, 20^{\circ} \mathrm{C}$), affording the tetrol 17. The relative configurations of 14, 16, and $\mathbf{1 7}$ were determined by their ${ }^{1} \mathrm{H}$ NMR spectra and double irradiation experiments.
In order to avoid aromatization during the ethereal bridge cleavage, we reduced triacetate $\mathbf{1 1}$ with $\mathrm{H}_{2} / \mathrm{Pd}-$ C, providing $\mathbf{1 8}$ (99\%). All of our attempts to open one of the two ethereal bridges of $\mathbf{1 8}$ gave complicated mixtures, probably due to the inefficient participation ability of the two endo acetoxy substituents. We thus exchanged the acetates of $\mathbf{1 8}$ for three p-methoxybenzoates (anisoates) as in 19, which proved to be a lowyielding process (saponification, followed by esterification). Thus, the dienediol $\mathbf{7}$ was benzylated ${ }^{12}$ to provide 20 (95\%), which was then oxidized with $\mathrm{NaIO}_{4} / \mathrm{OsO}_{4}$ to give aldehyde 21 (76%). Reduction of $\mathbf{2 1}$ with NaBH_{4}

[^1]
gave 22 (89\%), which was hydrogenated, hydrogenolyzed $\left(\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}\right)$, and then esterified with $\mathrm{p}-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{COCl} /$ pyridine/4-(dimethylamino)pyridine to provide 19 (94\%).
Treatment of triester $\mathbf{1 9}$ with BBr_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at -20 ${ }^{\circ} \mathrm{C}$ gave a major compound that was insoluble in most organic solvents. Acetylation ($\mathrm{Ac}_{2} \mathrm{O} /$ pyridine, DMAP, 20 ${ }^{\circ} \mathrm{C}$) provided the tetraacetate $\mathbf{2 3}$, the ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$ NMR spectra of which showed broad signals even at $100^{\circ} \mathrm{C}$ (toluene). The structure of $\mathbf{2 3}$ was determined by singlecrystal X-ray diffraction (see the Supporting Information)..13 In contrast to the preparation of $\mathbf{1 6}$, in which migration of the endo acetoxy group resulted from its participation in the reaction, no migration of the (pmethoxybenzoyl)oxy substituents occurred during the BBr_{3}-induced heterolysis of the two 7 -oxabicydlo[2.2.1]heptane ethereal bridges of 19 and quenching of the cationic intermediates with water.
When the treatment of $\mathbf{1 9}$ with BBr_{3} at $-20^{\circ} \mathrm{C}$ was followed by methanolysis ($\mathrm{MeOH} / \mathrm{NH}_{3}, 50^{\circ} \mathrm{C}$), the heptol

[^2]
$18 R=A c$
$19 R=A n$

$$
20 \mathrm{X}=\mathrm{CHCH}_{2}
$$
$$
21 \mathrm{X}=\mathrm{CHO}
$$
$$
22 \mathrm{X}=\mathrm{CH}_{2} \mathrm{OH}
$$

25

$\mathrm{An}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CO}$
26

24 (51\%) was obtained, the structure of which was confirmed from spectral data and an elemental analysis. On treating 19 with BBr_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-50^{\circ} \mathrm{C}$ (instead of $-20^{\circ} \mathrm{C}$), a regioselective oxa-bridge opening was observed leading to the diacetate 25 (75\%), after acetylation of the intermediate diol. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 5}$ showed broad signals at $25^{\circ} \mathrm{C}$ that coalesced above $60^{\circ} \mathrm{C}$ (benzene). Typical vicinal coupling constants between proton pairs $\mathrm{H}-\mathrm{C}(4 \mathrm{a}) / \mathrm{H}-\mathrm{C}(4 \mathrm{~b})(9.9 \mathrm{~Hz}), \mathrm{H}-\mathrm{C}(8) /$ $\mathrm{H}-\mathrm{C}(8 \mathrm{a})(8.0 \mathrm{~Hz}), \mathrm{H}-\mathrm{C}(5) / \mathrm{H}-\mathrm{C}(4 \mathrm{~b})(4.2 \mathrm{~Hz})$, and $\mathrm{H}_{\text {endo }}-\mathrm{C}(4) /$ $\mathrm{H}-\mathrm{C}(4 \mathrm{a})(0 \mathrm{~Hz})^{14}$ proved that the oxa bridge at $\mathrm{C}(1), \mathrm{C}(12)$ of 19 had been opened and not that at C(4), C(7). The reasons for the observed regioselectivity are not obvious. For the moment we must admit that the participation of the endo (p-methoxybenzoyl)oxy group of 19 at C(6) is impeded by the endo [(p-methoxybenzoyl)oxy]methyl substituent at $\mathrm{C}(8)$ perhaps for steric, conformational, or/ and solvation reasons.

Treatment of $\mathbf{2 5}$ with BBr_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-20^{\circ} \mathrm{C}$ gave a major diol intermediate that was converted into 26 (47%) on treatment with $\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{Cl} /(\mathrm{i}-\mathrm{Pr})_{2} \mathrm{EtN}$. Methanolysis of this diol provided the heptol 24, as expected, thus proving the structure of $\mathbf{2 5}$ and $\mathbf{2 6}$. This reaction also afforded a small amount (25\%) of the regioisomeric diol in which no migration of the (p-methoxybenzoyl) oxy substituent occurred. This compound was converted into 23 upon acetylation.

This note discloses a very efficient synthetic approach to polyfunctional perhydrophenanthrene systems with cis,trans,cis ring junctions. The discovery of regioselec-

[^3]tive BBr_{3}-induced ethereal bridge openings of the 1,4: 5,8-bis(epoxy)phenanthrene intermediates makes the method extremely versatile. Since the starting 7-oxabicyclo[2.2.1]hept-5-en-2-one (3) can be obtained readily in both enantiomeric forms ("naked sugars of the first generation"15), the new perhydropolyhydroxyphenanthrene derivatives presented here can, in principle, be prepared in their two enantiomerically pure forms since the cyclodimerization of the semicydic dienes such as 6 requires homochiral matching. ${ }^{5}$

Experimental Section

General Methods. See ref 16.

(\pm)-6-[(Trimethylsilyl)ethynyl]-7-oxabicyclo[2.2.1]hept-5-en-2-endo-ol (5). (\pm)-6-Bromo-7-oxabicyclo[2.2.1]hept-5-en-2-endo-ol ($3.03 \mathrm{~g}, 15.9 \mathrm{mmol}$), ${ }^{6}$ ethynyltrimethylsilane (4.4 mL , 32 mmol), anhydrous DMF (15 mL), $\mathrm{Et}_{2} \mathrm{NH}(4 \mathrm{~mL})$, Cul (121 $\mathrm{mg}, 0.64 \mathrm{mmol}$), and $\mathrm{Pd}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4}$ ($368 \mathrm{mg}, 0.32 \mathrm{mmol}$) were introduced successively into a Schlenk vessel. After degassing (two freeze/thaw cycles, vacuum line), the mixture was stirred at $50^{\circ} \mathrm{C}$ for 4 h . The solvent was removed by distillation in vacuo and the residue taken up with EtOAc (20 mL). The solution was filtered through a pad of silica gel $(3 \mathrm{~cm})$, rinsing with EtOAc (400 mL). After solvent evaporation, the brownish oil was purified by flash chromatography (silica gel, EtOAc/CH 2 $\mathrm{Cl}_{2} /$ light petroleum 1:1:3), yielding 2.59 g (79%) of a yellow oil that crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane at $-20^{\circ} \mathrm{C}$: $\mathrm{mp} 77-78^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.9 \mathrm{~Hz}), 4.97(1$ $\mathrm{H}, \mathrm{dd}, \mathrm{J}=5.0,1.9 \mathrm{~Hz}$), $4.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.3 \mathrm{~Hz}), 4.53(1 \mathrm{H}, \mathrm{br}$ dddd, $J=8.1,7.5,4.3,2.4 \mathrm{~Hz}$), 2.33 (1 H, ddd, $\mathrm{J}=12.1,8.1,5.0$ $\mathrm{Hz}), 1.65(\mathrm{OH}, \mathrm{br}$ d, $\mathrm{J}=7.5 \mathrm{~Hz}), 1.10(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.1, \mathrm{~J}=2.4$ $\mathrm{Hz}), 0.20(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.0,127.3$, 102.4, 98.2, 82.4, 80.3, 68.8, 35.4, -0.2.
(\pm)-6-Vinyl-7-oxabicyclo[2.2.1]hept-5-en-2-endo-ol (6). A suspension of $5(1.20 \mathrm{~g}, 6.24 \mathrm{mmol}), 5: 4 \mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL}), \mathrm{KCN}$ ($4.10 \mathrm{~g}, 62.4 \mathrm{mmol}$), and Zn (powder, 5 g) was stirred vigourously in the dark at $20^{\circ} \mathrm{C}$ for 50 min . The solid was removed via filtration through Celite, rinsing with EtOH, the solution was concentrated to 40 mL by solvent evaporation, and NaCl was added until saturation. The mixture was extracted with $\mathrm{CH}_{2}-$ Cl_{2} ($10 \mathrm{~mL}, 10$ times). The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was evaporated, giving 786 mg (88\%) of a colorless oil that polymerizes quickly at $20^{\circ} \mathrm{C}$: ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.59(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=17.5,10.7 \mathrm{~Hz}$), $6.39(1 \mathrm{H}$, d, J $=1.7 \mathrm{~Hz}$), $5.37(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=17.5 \mathrm{~Hz}), 5.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.7$ $\mathrm{Hz}), 5.10(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.6 \mathrm{~Hz}), 4.92(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4.8,1.7 \mathrm{~Hz})$, $4.54(1 \mathrm{H}$, dddd, $\mathrm{J}=8.3,8.1,4.6,2.3 \mathrm{~Hz}), 2.32(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=$ $12.0,8.1,4.8 \mathrm{~Hz}), 1.58(1 \mathrm{H}, \mathrm{br} d, \mathrm{~J}=8.3 \mathrm{~Hz}), 1.06(1 \mathrm{H}, \mathrm{dd}$, J $=12.0,2.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.4,133.5$, 130.6, 116.9, 80.0, 79.4, 68.6, 35.6.
(1RS,2SR,3SR,4RS,6RS,7RS,11SR,12RS,13RS)-11-Vinyl-15,16-dioxapentacyclo[10.2.1.14,7.0 ${ }^{3,8}, 0^{2,11}$]hexadec-8-ene-6,13-diol (7). A mixture of crude 6 ($1.05 \mathrm{~g}, 7.60 \mathrm{mmol}$), CH_{3-} CN (3 mL), and BHT (2,6-di-tert-butyl-p-cresol, 120 mg) was heated in the dark at $55^{\circ} \mathrm{C}$ for 120 h . The mixture was filtered through a pad of silica gel (boiling EtOAc, 200 mL), and the solution was concentrated by evaporation to 5 mL . After cooling to $-20^{\circ} \mathrm{C}, 667 \mathrm{mg}$ of colorless crystals were collected. The mother liquor was purified by flash chromatography (silica gel, EtOAc), giving 60 mg of crystalline 7: yield $727 \mathrm{mg}(69 \%)$; mp $152-153^{\circ} \mathrm{C}$ (EtOAC); ${ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.20(1 \mathrm{H}$, dd, J = 17.5, 10.8 Hz), $5.78(1 \mathrm{H}, \mathrm{m}), 5.06(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.8 \mathrm{~Hz})$,

[^4]$5.01(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=17.5 \mathrm{~Hz}), 4.68(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.0 \mathrm{~Hz}), 4.67-4.26$ $(2 \mathrm{H}, \mathrm{m}), 4.41(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.6 \mathrm{~Hz}), 4.33(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.2 \mathrm{~Hz})$, $3.97(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}), 2.45(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=12.7,10.6,6.2 \mathrm{~Hz}$), $2.34(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=12.8,9.6,5.6 \mathrm{~Hz}$), 2.30-2.16 ($2 \mathrm{H}, \mathrm{m}$), 2.06 $(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 1.99(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 1.70(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}=8.4$ Hz), 1.26 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.8,2.7 \mathrm{~Hz}$), $1.17(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.7,4.9$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ NMR ($90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.4,142.2,121.0,114.9$, 84.6, 84.5, 81.3, 75.5, 70.7, 54.9, 51.8, 48.4, 40.1, 39.4, 34.8.
(1RS,2SR,3SR,4RS,7RS,11SR,12RS)-11-Vinyl-15,16dioxapentacyclo[10.2.1. $\left.\mathbf{1}^{4,7} .0^{3,8} .0^{2,11}\right]$ hexadec-8-ene-6,13-dione (8). A mixture of $7(250 \mathrm{mg}, 0.905 \mathrm{mmol})$, Dess-Martin periodinane ($1.15 \mathrm{~g}, 2.72 \mathrm{mmol}$), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was stirred at $20^{\circ} \mathrm{C}$ for 2 h . The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and washed with a 10% aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(50 \mathrm{~mL}$, twice), each aqueous phase being extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}$, twice). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was evaporated. The residue was filtered through a pad of silica gel, rinsing with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$ (13:1), and crystallized from EtOAc/light petroleum, yielding 207 mg (84\%) of colorless needles, $\mathrm{mp} 142-143{ }^{\circ} \mathrm{C}$ (EtOAclight petroleum). Spectral characteristics were identical to those already reported. ${ }^{5}$
(1RS,2SR,3SR,4RS,6RS,7RS,11SR,12RS,13RS)-11-Vinyl-15,16-dioxapentacyclo[10.2.1.1 ${ }^{4,7} .0^{2,11} .0^{3,8}$]hexadec-8-ene-6,13-diyl Diacetate (9). A mixture of 8 ($0.3 \mathrm{~g}, 1.09 \mathrm{mmol}$), anhydrous pyridine (2 mL), Ac $\mathrm{C}_{2} \mathrm{O}(2 \mathrm{~mL})$, and DMAP ($4-$ (dimethylamino)pyridine, 10 mg) was stirred at $20^{\circ} \mathrm{C}$ for 16 h . After solvent evaporation, the residue was purified by flash chromatography (silica gel, EtOAc/light petroleum 1:2), yielding 387 mg (99\%) of a col orless oil that crystallized from a minimum of hexane: colorless prisms; mp 108-110 ${ }^{\circ} \mathrm{C}$ (hexane); ${ }^{1} \mathrm{H}$ NMR $\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.85(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=17.3,10.9 \mathrm{~Hz}), 5.60(1 \mathrm{H}$, ddd, J = 6.8, 3.9, 3.2 Hz), 4.98-4.90 (3 H, m), 4.86 (1 H, d, J = $10.9 \mathrm{~Hz}), 4.81(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=17.3 \mathrm{~Hz}), 4.40,4.35(2 \mathrm{H}, 2 \mathrm{~d}, \mathrm{~J}=5.5$, $6.1 \mathrm{~Hz}), 4.27(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.4 \mathrm{~Hz}), 2.42(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=12.7,10.8$, $6.1 \mathrm{~Hz}), 2.34(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=13.0,9.7,5.5 \mathrm{~Hz}), 2.27(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ $=13.5,6.8 \mathrm{~Hz}), 2.08(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.5,3.9 \mathrm{~Hz}), 1.99,1.97(6 \mathrm{H}$, $2 \mathrm{~s}), 1.96(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.3,3.2 \mathrm{~Hz}), 1.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.3 \mathrm{~Hz})$, $1.51(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.7,2.4 \mathrm{~Hz}), 1.48(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.0,4.8 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.9,170.8,141.8,140.9,118.2$, 112.0, 84.4, 83.5, 80.7, 79.6, 75.0, 73.5, 54.5, 53.4, 47.3, 36.7, 37.3, 33.1, 21.0, 20.9.
(1RS,2SR,3SR,4RS,6RS,7RS,11SR,12RS,13RS)-11-Formyl-15,16-dioxapentacyclo[10.2.1.1 $\left.{ }^{4,7} .0^{2,11} .0^{3,8}\right]$ hexadec-8-ene-6,13-diyl Diacetate (10). A mixture of 9 ($372 \mathrm{mg}, 1.03 \mathrm{mmol}$), 9:5 dioxane/ $\mathrm{H}_{2} \mathrm{O}(14 \mathrm{~mL}), \mathrm{Nal} \mathrm{O}_{4}(442 \mathrm{mg}, 2.06 \mathrm{mmol})$, and a 0.1 M CCI 4 solution of $\mathrm{OsO}_{4}(1.03 \mathrm{~mL}, 0.103 \mathrm{mmol})$ was stirred at $20^{\circ} \mathrm{C}$ for 8 h . After solvent evaporation to half volume, NaCl was added until saturation and the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL , five times). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was evaporated. The residue was purified by flash chromatography (silica gel, EtOAc/light petroleum 1:1), giving 214 mg (57\%) of a colorless powder that was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane: $\mathrm{mp} 185-188{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.51(1 \mathrm{H}, \mathrm{s}), 5.58(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=7.2$, $3.7,1.4 \mathrm{~Hz}$), $5.01(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=10.4,4.6,4.1 \mathrm{~Hz}), 4.93-4.89(2$ $\mathrm{H}, \mathrm{m}), 4.47(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.2 \mathrm{~Hz}), 4.45(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.8 \mathrm{~Hz}), 4.42$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.6 \mathrm{~Hz}), 2.82(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=14.1,7.2 \mathrm{~Hz}), 2.49(1 \mathrm{H}$, ddd, $\mathrm{J}=13.2,10.4,6.2 \mathrm{~Hz}$), $2.38(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.2 \mathrm{~Hz}), 2.38-2.31$ $(1 \mathrm{H}, \mathrm{m}), 2.06(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=14.1,3.7 \mathrm{~Hz}), 2.03(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.2$, 1.4 Hz), 2.00, $1.96(6 \mathrm{H}, 2 \mathrm{~s}), 1.50(1 \mathrm{H}, \mathrm{J}=11.9,2.4 \mathrm{~Hz}), 1.46$ $(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.2,4.1 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.1$, $170.5,169.8,143.1,116.2,84.1,83.4,79.9,79.3,73.5,73.1,63.7$, 50.6, 46.5, 36.4, 35.5, 28.8, 20.7, 20.5.
(1RS,2SR,3SR,4RS,6RS,7RS,11RS,12RS,13RS)-11-(Ace-toxymethyl)-15,16-dioxapentacyclo[10.2.1.1 $\left.{ }^{4,7} .0^{2,11} .0^{3,8}\right]$ -hexadec-8-ene-6,13-diyl Diacetate (11). $\mathrm{NaBH}_{4}(40 \mathrm{mg})$ was added to a stirred solution of $\mathbf{1 0}(172 \mathrm{mg}, 0.47 \mathrm{mmol})$ in $4: 3$ $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ cooled to $0{ }^{\circ} \mathrm{C}$. After being stirred at 0 ${ }^{\circ} \mathrm{C}$ for $15 \mathrm{~min}, 10 \%$ aqueous HCl was added to pH 4 . The solution was concentrated to a quarter of the volume by solvent evaporation, and NaCl was added until saturation. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL , eight times). The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was evaporated. The residue was taken with anhydrous pyridine (3 mL), and $\mathrm{Ac}_{2} \mathrm{O}(3 \mathrm{~mL})$ and DMAP (5 mg) were added. After the mixture was stirred at $20^{\circ} \mathrm{C}$ for 2 days, the solvent was evaporated in vacuo and the residue filtered through a pad of silica gel (EtOAc/ light petroleum 1:1), yielding 148 mg (77\%) of a colorless solid

Notes

that was recrystallized from EtOAc/hexane to give colorless needles; mp 182-182.5 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.66$ (1 H, ddd, $\mathrm{J}=7.3,3.5,1.5 \mathrm{~Hz}$), $5.02(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=10.9,5.4,4.5$ $\mathrm{Hz}), 4.95(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.8 \mathrm{~Hz}), 4.89(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=9.6,4.8,2.4$ $\mathrm{Hz}), 4.32(2 \mathrm{H}, 2 \mathrm{~d}, \mathrm{~J}=6.2,5.5 \mathrm{~Hz}), 4.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz})$, $4.04(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.47(1 \mathrm{H}$, ddd, J = 12.8, 10.9, 6.2 Hz), 2.35 (1 $\mathrm{H}, \mathrm{ddd}, \mathrm{J}=14.1,7.3 \mathrm{~Hz}$), $2.30(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=12.9,9.6,5.5 \mathrm{~Hz}$), 2.03, 1.96, $1.94(9 \mathrm{H}, 3 \mathrm{~s}), 1.97(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.4,1.5 \mathrm{~Hz}), 1.88$ (1 $\mathrm{H}, \mathrm{dd}, \mathrm{J}=14.1,3.5 \mathrm{~Hz}$), $1.47(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.9,2.4 \mathrm{~Hz}$), 1.46 (1 $\mathrm{H}, \mathrm{dd}, \mathrm{J}=12.8,5.4 \mathrm{~Hz}$, $1.29(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.6,170.5,170.3,141.6,117.6,83.6,82.3$, $79.9,79.4,74.7,73.2,66.9,53.2,51.6,46.8,36.4,34.8,30.0,20.7$, 20.6, 20.5.
(1RS,2RS,4RS,4aRS,10aRS)-10a-(Acetoxymethyl)-1,2,3,4,-4a,10a-hexahydro-1,4-epoxyphenanthren-2-yl Acetate (12). $\mathrm{Me}_{3} \mathrm{SiOSO}_{2} \mathrm{CF}_{3}(98 \mu \mathrm{~L}, 120 \mathrm{mg}, 0.44 \mathrm{mmol}$) was added to a stirred solution of $\mathbf{1 1}(73 \mathrm{mg}, 0.128 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \mathrm{~mL})$ and $\mathrm{Ac}_{2} \mathrm{O}(0.4 \mathrm{~mL})$ cool ed to $0^{\circ} \mathrm{C}$. After the solution was stirred at $0^{\circ} \mathrm{C}$ for 2 h , a saturated aqueous solution of NaHCO_{3} (15 mL) was added, and the mixture was stirred vigorously at 0 ${ }^{\circ} \mathrm{C}$ for 15 min . The organic phase was collected, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL , three times). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, and the sol vent was evaporated. The residue was purified by flash chromatography (silica gel, EtOAc/light petroleum 1:3), yielding 44 mg (75%) of a solid that was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane: mp $159-160^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21-7.13,7.07-7.05$, 7.01-6.99 ($4 \mathrm{H}, 3 \mathrm{~m}$), $6.41(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.8 \mathrm{~Hz}$), $5.76(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=9.8 \mathrm{~Hz}), 5.18(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=11.0,4.6,4.5 \mathrm{~Hz}), 4.53(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=5.7 \mathrm{~Hz}), 4.51,4.46(2 \mathrm{H}, 2 \mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}), 4.46(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $4.5 \mathrm{~Hz}), 3.11(1 \mathrm{H}, \mathrm{s}), 2.57(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=12.9,11.0,5.7 \mathrm{~Hz})$, 2.07, $2.02(6 \mathrm{H}, 2 \mathrm{~s}), 1.77(1 \mathrm{H}, \mathrm{dd}, 12.9, \mathrm{~J}=4.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.6,170.4,133.7,130.9,128.4,128.3$, 128.1, 127.4, 127.2, 127.1, 89.6, 83.0, 75.1, 69.1, 52.1, 51.6, 37.6, 20.8, 20.7.
(1RS,2RS,4RS,4aRS,10aRS)-10a-(Acetoxymethyl)-1,2,3,4,-4a,9,10,10a-octahydro-1,4-epoxyphenanthren-2-yl Acetate (13). A mixture of $\mathbf{1 2}$ ($30 \mathrm{mg}, 91 \mu \mathrm{~mol}$), 10% Pd on charcoal (20 mg), and EtOAc (8 mL) was degassed and pressurized with H_{2} (1 atm). After being stirred at $20^{\circ} \mathrm{C}$ for 3 h , the mixture was filtered through Celite and the sol vent was evaporated, yielding 30 mg (100\%) of a colorless solid that was recrystallized from $\mathrm{CHCl}_{3} /$ hexane: $\mathrm{mp} 148-149{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.22-7.09 ($4 \mathrm{H}, \mathrm{m}$), $5.14(1 \mathrm{H}$, ddd, J $=11.0,4.9,4.6 \mathrm{~Hz}$), 4.60 $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.9 \mathrm{~Hz}), 4.46(2 \mathrm{H}, \mathrm{s}), 4.39(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.6 \mathrm{~Hz}), 2.79$ (1 H, ddd, J $=16.0,6.4,4.4 \mathrm{~Hz}$), $2.69(1 \mathrm{H}, \mathrm{s}), 2.63(1 \mathrm{H}, \mathrm{ddd}$, J $=16.0,6.5,4.3 \mathrm{~Hz}$), $2.58(1 \mathrm{H}$, ddd, J $=12.8,11.0,5.9 \mathrm{~Hz}), 2.09$, $2.04(6 \mathrm{H}, 2 \mathrm{~s}), 1.97(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=13.3,6.4,4.3 \mathrm{~Hz}$), $1.85(1 \mathrm{H}$, ddd, J = 13.3, 6.5, 4.3 Hz), 1.67 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.8,4.9 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.0,170.5,137.8,136.7,128.7$, 128.4, 126.4, 126.1, 86.7, 83.2, 74.6, 66.9, 51.6, 49.0, 36.4, 30.1, 25.7, 20.8.
(1RS,2RS,4SR,4aRS,10aRS)-10a-(Acetoxymethyl)-4-bro-mo-1,2,3,4,4a,9,10, 10a-octahydrophenanthrene-1,2-diyl Diacetate (14). A mixture of $\mathbf{1 3}(11 \mathrm{mg})$ in $33 \% \mathrm{HBr}$ in AcOH $(1.5 \mathrm{~mL})$ was heated to $55^{\circ} \mathrm{C}$ for 18 h . After solvent evaporation, the residue was purified by flash chromatography (silica gel, EtOAc/light petroleum 1:2), yielding $12 \mathrm{mg}(80 \%)$ of a colorless viscous oil: ${ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.09(4 \mathrm{H}, \mathrm{m})$, $5.38(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.2 \mathrm{~Hz}$), $5.16(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=11.7,10.2,4.9$ $\mathrm{Hz}), 4.08(1 \mathrm{H}, \mathrm{J}=12.6,11.2,4.3 \mathrm{~Hz}), 3.89,3.39(2 \mathrm{H}, 2 \mathrm{~d}, \mathrm{~J}=$ $11.5 \mathrm{~Hz}), 3.11(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.2 \mathrm{~Hz}), 3.00(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=13.4$, 9.2, 4.0 Hz), $2.83(1 \mathrm{H}$, ddd, J $=12.7,4.9,4.3 \mathrm{~Hz}$), $2.82-2.73$, 2.19-2.10, 1.74-1.67 (3 H, 3 m), 2.20 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=12.7,12.6$, 11.7 Hz), 2.06, $2.05(6 \mathrm{H}, 3 \mathrm{H}, 2 \mathrm{~s})$; ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.7,170.3,169.9,134.2,134.1,132.4,128.7,127.9,125.3$, 72.6, 69.9, 64.2, 49.7, 49.5, 42.7, 40.8, 24.4, 20.9, 20.9, 20.8, 20.7.
(1RS,2SR,4SR,4aSR,10aSR)-10a-(Acetoxymethyl)-1,2,3,4,-4a,9,10,10a-octahydro-2,4-dihydroxyphenanthren-1-yl Acetate (16). A 1 M solution of BBr_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(160 \mu \mathrm{~L})$ was added to a stirred solution of $\mathbf{1 3}(26 \mathrm{mg}, 79 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ cooled to $-18{ }^{\circ} \mathrm{C}$. After the solution was stirred at $-18^{\circ} \mathrm{C}$ for 50 min , a saturated aqueous solution of $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ was added, and the mixture was stirred vigorously at $0{ }^{\circ} \mathrm{C}$ for 15 min . The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL}$, five times). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was evaporated, yielding 27 mg (98\%) of a col orless solid that was recrystallized from $\mathrm{CHCl}_{3} /$ hexane: $\mathrm{mp} 155-157$
${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.19-7.10(4 \mathrm{H}, \mathrm{m}), 5.28(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=1.9 \mathrm{~Hz}), 4.47(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=11.8,4.8,1.9 \mathrm{~Hz}), 4.21(1 \mathrm{H}$, ddd, J $=3.1,2.9,2.5 \mathrm{~Hz}$), $4.07,3.65(2 \mathrm{H}, 2 \mathrm{~d}$, J $=11.4 \mathrm{~Hz}$), $2.95-2.80(2 \mathrm{H}, \mathrm{m}), 2.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}), 2.46-2.38,1.87-$ $1.82(2 \mathrm{H}, 2 \mathrm{~m}), 2.13,2.02(6 \mathrm{H}, 2 \mathrm{~s}), 2.12-2.01(2 \mathrm{H}, \mathrm{m}), 2.00$, $1.25(2 \mathrm{H}, 2 \mathrm{br} \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.6,171.1$, 136.7, 133.9, 129.4, 129.2, 127.1, 126.7, 74.5, 72.7, 63.8, 63.7, 42.5, 40.2, 33.9, 25.0, 23.4, 21.0, 20.7.
(1RS,2SR,4SR,4aSR,10aSR)-1,2,3,4,4a,9,10,10a-Octahydro-10a-(hydroxymethyl)phenanthrene-1,2,4-triol (17). A solution of $16(13 \mathrm{mg}, 37 \mu \mathrm{~mol})$ in MeOH saturated with $\mathrm{NH}_{3}(2$ mL) was stirred for 24 h at $20^{\circ} \mathrm{C}$. After solvent evaporation, the residue was purified by column chromatography (Florisil, $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} \mathrm{l}: 15$), yielding 6 mg (61%) of a colorless solid recrystallized from $\mathrm{MeOH} / \mathrm{AcOEt}$ //light petroleum: colorless prisms; mp 197-199 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.16-$ $7.13(4 \mathrm{H}, \mathrm{m}), 4.47(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=12.2,4.1,1.9 \mathrm{~Hz}), 4.26(1 \mathrm{H}$, ddd, J $=3.8,3.2,3.1 \mathrm{~Hz}$), $3.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.9 \mathrm{~Hz}$), 3.65, $3.29(2$ $\mathrm{H}, 2 \mathrm{~d}, \mathrm{~J}=11.1 \mathrm{~Hz}), 2.91-2.87(2 \mathrm{H}, \mathrm{m}), 2.66(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.8$, 1.4 Hz), 2.41-2.33 ($1 \mathrm{H}, \mathrm{m}$), 2.19 (1 H , ddd, J $=12.9,12.2,3.1$ Hz), $1.90(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=12.9,4.1,3.2 \mathrm{~Hz})$, $1.69(1 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR (100.6 MHz, CD 3 OD) $\delta 138.7,137.7,130.5,129.8,127.1$, 126.8, 75.6, 74.0, 65.8, 64.8, 42.6, 42.4, 35.8, 26.2, 24.2.
(1RS,2SR,3SR,4SR,6SR,7RS,8SR,11SR,12RS,13RS)-8-(Ac-etoxymethyl)-15,16-dioxapentacyclo[10.2.1.14,7.0 ${ }^{2,11} .0^{3,8}$]-hexadeca-6,13-diyl Diacetate (18). A mixture of $\mathbf{1 1}$ (77 mg , 0.19 mmol), 10% Pd on charcoal (65 mg), and EtOAc (20 mL) was degassed and pressurized with H_{2} (1 atm). After being stirred at $20^{\circ} \mathrm{C}$ for 24 h , the mixture was filtered through Celite, and the solvent was evaporated, yielding 76 mg (99\%) of a colorless solid: mp 170-171 ${ }^{\circ} \mathrm{C}$ (EtOAc); ${ }^{1} \mathrm{H}$ NMR (360 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 4.98(1 \mathrm{H}$, ddd, $\mathrm{J}=10.9,6.0,5.0 \mathrm{~Hz}), 4.85(1 \mathrm{H}$, ddd, $\mathrm{J}=10.2,4.7,3.7 \mathrm{~Hz}), 4.51,4.14(2 \mathrm{H}, 2 \mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}), 4.20(1$ $\mathrm{H}, \mathrm{d}, \mathrm{J}=4.7 \mathrm{~Hz}), 4.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), 4.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.0$ $\mathrm{Hz}), 4.10(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.8 \mathrm{~Hz})$, $2.52(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=8.6,8.5,8.4$ $\mathrm{Hz}), 2.43(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=12.9,10.9,6.5 \mathrm{~Hz}), 2.27(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=$ $13.0,10.2,5.8 \mathrm{~Hz}), 2.05,2.04,1.96(9 \mathrm{H}, 3 \mathrm{~s}), 1.84(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $8.6,8.1 \mathrm{~Hz}), 1.77-1.72,1.67-1.60,1.20-1.10(4 \mathrm{H}, 3 \mathrm{~m}), 1.43$ $(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.9,6.0 \mathrm{~Hz}), 1.32(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}), 1.25(1 \mathrm{H}$, $\mathrm{dd}, \mathrm{J}=13.0,3.7 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.7,170.4$, 85.8, 84.2, 82.9, 81.7, 74.9, 73.3, 65.0, 50.8, 47.7, 46.6, 36.4, 35.6, 33.4, 27.0, 20.9, 20.7, 20.7.
(1RS,2RS,3SR,4RS,6RS,7RS,8RS,11RS,12SR,13RS)-8-[[(4-Methoxybenzoyl)oxy]methyl]-15,16-dioxapentacyclo[10.2.1.14,7.0 ${ }^{2,11} .0^{3,8}$] hexadeca-6,13-diyl Bis(4^{\prime}-methoxybenzoate) (19). A mixture of $22(90 \mathrm{mg}, 0.19 \mathrm{mmol}), 10 \% \mathrm{Pd}$ on charcoal (50 mg), and 1:1 EtOAc/MeOH (12 mL) was degassed and pressurized with H_{2} (1 atm). After being stirred at $20^{\circ} \mathrm{C}$ for 15 h , the mixture was filtered through Celite and the solvent evaporated. The residue was taken up with anhydrous pyridine (4 mL), and anisoyl chloride ($4-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{COCl}, 0.3 \mathrm{~g}, 1.76 \mathrm{mmol}$) and DMAP (5 mg) were added. After the mixture was stirred at $20^{\circ} \mathrm{C}$ for $24 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added and the mixture stirred at $20^{\circ} \mathrm{C}$ for 2 h . After addition of 2 N aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}(50 \mathrm{~mL})$, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL , three times). The combined organic extracts were washed with a saturated aqueous solution of $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL , three times). The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was evaporated. The residue was purified by flash chromatography (silica gel, EtOAc/light petroleum 1:1), yielding 124 mg (93\%), colorless oil that crystallized from EtOAcllight petroleum: mp $201-202{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.99-7.96,7.59-7.57$ ($6 \mathrm{H}, 2 \mathrm{~m}$), 6.96-6.93, 6.75-6.73, 6.56-6.53 ($6 \mathrm{H}, 3 \mathrm{~m}$), 5.27 (1 H , ddd, J = 10.9, 6.2, 4.1 Hz), $5.12(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=13.1,4.3,3.6$ $\mathrm{Hz}), 4.75,4.37(2 \mathrm{H}, 2 \mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}), 4.52(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.1 \mathrm{~Hz})$, $4.36(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.3 \mathrm{~Hz}), 4.30(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.2 \mathrm{~Hz}), 4.24(1 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=5.7 \mathrm{~Hz}), 3.88,3.83,3.75(9 \mathrm{H}, 3 \mathrm{~s}), 2.71-2.64(1 \mathrm{H}, \mathrm{m}), 2.55$ $(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=12.8,10.9,6.2 \mathrm{~Hz}), 2.42(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=13.1,10.2$, $5.7 \mathrm{~Hz}), 1.99(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.4,8.2 \mathrm{~Hz}), 1.91-1.87(1 \mathrm{H}, \mathrm{m}), 1.75$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.8,6.2 \mathrm{~Hz}$), 1.65-1.59 ($1 \mathrm{H}, \mathrm{m}$), $1.52(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=8.2 \mathrm{~Hz}), 1.46(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.1,3.6 \mathrm{~Hz}), 1.48-1.15(2 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ N MR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.9,165.8,165.6,163.5,163.0$, $162.9,131.6,131.3,131.2,122.0,121.9,121.3,113.6,113.0,112.9$, 85.6, 84.3, 83.2, 82.0, 75.6, 73.5, 65.2, 55.4, 55.3, 55.2, 51.3, 47.7, 46.7, 36.7, 35.8, 33.0, 27.1, 20.8.
(1RS,2SR,3SR,4RS,6RS,7RS,11SR,12RS,13RS)-6,13-Bis-(benzyloxy)-11-vinyl-15,16-dioxapentacyclo[10.2.1.-

14,7.0 ${ }^{2,11} .0^{3,8}$]hexadec-8-ene (20). NaH (55% in oil, 300 mg) was added to a solution of $7(0.4 \mathrm{~g}, 1.44 \mathrm{mmol})$ in anhydrous THF (12 mL) cooled to $0^{\circ} \mathrm{C}$. After the solution was stirred at $0^{\circ} \mathrm{C}$ for $10 \mathrm{~min}, \mathrm{PhCH}_{2} \mathrm{Br}(0.38 \mathrm{~mL}, 3.18 \mathrm{mmol})$ and $\mathrm{Bu}_{4} \mathrm{NI}(53 \mathrm{mg}$, $144 \mu \mathrm{~mol}$) were added. The mixture was stirred at $20^{\circ} \mathrm{C}$ for 20 h. A saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and then $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ were added. The solution was saturated with NaCl and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL , six times). The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was evaporated. The residue was purified by flash chromatography (silica gel, EtOAc/light petroleum 1:3), yielding 627 mg (95\%) of a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.28(\mathrm{~m}, 10 \mathrm{H}), 6.25(1$ $\mathrm{H}, \mathrm{dd}, \mathrm{J}=17.3,10.7 \mathrm{~Hz}), 5.76(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.2,3.8,2.3 \mathrm{~Hz}$), $4.91(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=17.3,0.8 \mathrm{~Hz}), 4.89(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.7,0.8 \mathrm{~Hz})$, $4.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.8 \mathrm{~Hz}), 4.54,4.51,4.46,4.43(4 \mathrm{H}, 4 \mathrm{~d}, \mathrm{~J}=$ $11.6 \mathrm{~Hz}), 4.38(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.6 \mathrm{~Hz}), 4.35(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.2 \mathrm{~Hz})$, $4.15(1 \mathrm{H}$, ddd, $\mathrm{J}=9.6,4.8,3.1 \mathrm{~Hz}), 4.15(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=10.4$, $5.6,4.2 \mathrm{~Hz}), 4.07(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.2 \mathrm{~Hz}), 2.42(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.7$, $7.2 \mathrm{~Hz}), 2.36(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=12.2,10.4,6.2 \mathrm{~Hz}), 2.26(1 \mathrm{H}, \mathrm{ddd}$, $\mathrm{J}=12.5,9.6,5.6 \mathrm{~Hz}), 2.17(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.7,3.8 \mathrm{~Hz}), 2.10(1 \mathrm{H}$, $\mathrm{dd}, \mathrm{J}=9.5,2.3 \mathrm{~Hz}), 1.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.5 \mathrm{~Hz}), 1.45(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ $=12.2,5.6 \mathrm{~Hz}), 1.44(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.5,3.1 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR $(100.6$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.0,141.5,137.9,137.8,128.1,128.0,127.6$, $127.5,127.3,127.2,118.0,110.9,84.4,84.2,81.2,80.9,80.0,78.0$, 72.0, 71.5, 54.6, 47.7, 54.4, 37.3, 32.5, 32.5.
(1RS,2SR,3SR ,4RS,6RS,7RS,8SR,12RS,13RS)-6,13-Bis-(benzyloxy)-15,16-dioxapentacyclo[10.2.1.1 $\left.1^{4,7} \cdot 0^{2,11} .0^{3,8}\right]$ -hexadec-10-ene-8-carbaldehyde (21). A mixture of 20 (676 $\mathrm{mg}, 1.48 \mathrm{mmol}), 9: 5$ dioxane $/ \mathrm{H}_{2} \mathrm{O}(28 \mathrm{~mL}), \mathrm{NaI} \mathrm{O}_{4}(633 \mathrm{mg}, 2.96$ mmol), and a 0.1 M solution of OsO_{4} in $\mathrm{CCl}_{4}(1.48 \mathrm{~mL}, 0.148$ mmol) was stirred at $20^{\circ} \mathrm{C}$ for 19 h . After solvent evaporation to reduce the volume by half, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL , seven times). The combined extracts were dried (MgSO_{4}), and the solvent was evaporated. The residue was purified by flash chromatography (silica gel, EtOAc/light petroleum 1:2), yielding 518 mg (76\%), colorless viscous oil: ${ }^{1}$ H NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.58(1 \mathrm{H}, \mathrm{s}), 7.39-7.26$ ($10 \mathrm{H}, \mathrm{m}$), 5.70 (1 $\mathrm{H}, \mathrm{ddd}, \mathrm{J}=7.3,3.8,2.3 \mathrm{~Hz}$), $4.70(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.6), 4.47,4.49(2$ $\mathrm{H}, 2 \mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}), 4.44,4.42(2 \mathrm{H}, 2 \mathrm{~d}, \mathrm{~J}=5.0,5.1 \mathrm{~Hz}), 4.39$ $(2 \mathrm{H}, \mathrm{s}), 4.33(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.4 \mathrm{~Hz}), 4.17-4.06(2 \mathrm{H}, \mathrm{m}), 2.91(1 \mathrm{H}$, dd, J $=14.0,7.3 \mathrm{~Hz}), 2.36(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.7 \mathrm{~Hz}), 2.35-2.22(2 \mathrm{H}$, m), $2.13(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.7,2.3 \mathrm{~Hz}), 2.09(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=14.0,3.8$ $\mathrm{Hz}), 1.48(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.6,4.0 \mathrm{~Hz}), 1.43(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.4,2.8$ Hz); ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.2,143.8,137.8,137.1$, $128.3,128.2,127.7,127.5,116.8,85.6,84.3,80.5,80.1,79.5,78.1$, 72.2, 71.8, 63.3, 51.9, 47.2, 37.4, 36.0, 29.1.
[(1RS,2RS,3SR,4RS,6RS,7RS,8RS,12RS,13RS)-6,13-Bis-(benzyloxy)-15,16-dioxapentacyclo[10.2.1.1 $\left.{ }^{4,7} .0^{2,11} .0^{3,8}\right]$ -hexadec-10-en-8-yl]methanol (22). $\mathrm{NaBH}_{4}(50 \mathrm{mg}$) was added to a stirred solution of $\mathbf{2 1}(200 \mathrm{mg}, 0.436 \mathrm{mmol})$ in 2:1 $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$ cooled to $0{ }^{\circ} \mathrm{C}$. After being stirred at 20 ${ }^{\circ} \mathrm{C}$ for 20 min , the mixture was acidified with 10% aqueous HCl (pH 4 4). Solvent was evaporated to half volume, and NaCl was added until saturation. The mixture was extracted with $\mathrm{CH}_{2}-$ $\mathrm{Cl}_{2}\left(10 \mathrm{~mL}, 7\right.$ times). The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was evaporated, yielding 179 mg (89\%) of a colorless oil that crystallized from EtOAc/hexane: mp 144-145 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.28$ ($10 \mathrm{H}, \mathrm{m}$), 5.83 (1 H , ddd, $\mathrm{J}=7.4,3.0,2.9 \mathrm{~Hz}$), $4.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.6 \mathrm{~Hz}), 4.62,4.53$ $(2 \mathrm{H}, 2 \mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}), 4.51,4.44(2 \mathrm{H}, 2 \mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}), 4.31$, $4.30(2 \mathrm{H}, 2 \mathrm{~d}, \mathrm{~J}=7.8,6.0 \mathrm{~Hz}), 4.21-4.11(2 \mathrm{H}, \mathrm{m}), 4.04(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=4.4 \mathrm{~Hz}), 3.67(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}=11.8 \mathrm{~Hz})$, $3.37(1 \mathrm{H}, \mathrm{br} \mathrm{dd}$, J $=11.8,9.1 \mathrm{~Hz}), 3.26(1 \mathrm{H}, \mathrm{br} d, \mathrm{~J}=9.1 \mathrm{~Hz}), 2.59(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $14.0,7.4 \mathrm{~Hz}), 2.32-2.20(2 \mathrm{H}, \mathrm{m}), 2.05(1 \mathrm{H}, \mathrm{brd} \mathrm{d}, \mathrm{J}=9.6 \mathrm{~Hz})$, $1.91(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}=14.0 \mathrm{~Hz}), 1.41(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.4,2.8 \mathrm{~Hz})$, $1.40(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.5,5.4 \mathrm{~Hz}), 1.31(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.7,138.0,136.9,128.6,128.3$, $128.2,127.8,127.7,118.2,84.3,84.2,81.3,80.7,80.3,78.2,73.4$, 71.8, 67.0, 54.7, 53.3, 47.5, 37.5, 34.7, 30.6.
(1RS,2SR ,4SR,4aSR ,4bRS,5SR, 7SR ,8RS,8aSR,10aSR)-1,4,5,8-Tetraacetoxyperhydro-8a-[((4'-methoxybenzoyl)-oxy]methyl]phenanthrene-2,7-diyl $\mathrm{Bis}(4$-methoxybenzoate) (23). A 1 M solution of BBr_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(116 \mu \mathrm{~L}, 116 \mu \mathrm{~mol})$ was added to a stirred solution of $19(20 \mathrm{mg}, 29 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 mL) cooled to $-18^{\circ} \mathrm{C}$. After the solution was stirred at $-18^{\circ} \mathrm{C}$ for 45 min , a saturated aqueous solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added, and the mixture was stirred vigorously at $0^{\circ} \mathrm{C}$ for 5 min . The aqueous layer was extracted with EtOAc (5 mL , five
times). The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, the solvent was evaporated, and the residue was purified by flash chromatography (silica gel, EtOAc/light petroleum 2:1 and then EtOAc). The product was taken up with anhydrous pyridine (1 mL). $\mathrm{Ac}_{2} \mathrm{O}(1 \mathrm{~mL})$ and DMAP (2 mg) were added, and the mixture was stirred at $20^{\circ} \mathrm{C}$ for 13 h . The solvent was evaporated, and the residue was purified by flash chromatography (silica gel, EtOAc/light petroleum 1:1), yielding 13 mg (50%) of a colorless solid that was recrystallized from EtOAc/ light petroleum: mp $231-232{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, toluene $\left.\mathrm{d}_{8}, 10{ }^{\circ} \mathrm{C}\right) \delta 8.34,8.30,8.21(6 \mathrm{H}, 3 \mathrm{~d}, \mathrm{~J} \cong 8.6 \mathrm{~Hz}), 6.95-6.93$ $(6 \mathrm{H}, \mathrm{m}), 5.94-5.76(4 \mathrm{H}, \mathrm{m}), 5.69,4.35(2 \mathrm{H}, 2 \mathrm{br} \mathrm{d}$, J $=11.4$ $\mathrm{Hz}), 5.61,5.45(2 \mathrm{H}, 2 \mathrm{br} \mathrm{s}), 3.57,3.53(9 \mathrm{H}, 2 \mathrm{~s}), 2.75-2.71(1$ $\mathrm{H}, \mathrm{m}), 2.56-2.54(1 \mathrm{H}, \mathrm{m}), 2.43-1.91(9 \mathrm{H}, \mathrm{m}), 2.04,1.98$ (12 H , 2 s).
(1RS,2SR ,4SR ,4aSR ,4bRS,5SR ,7SR ,8RS,8aSR ,10aSR)-Perhydro-8a-(hydroxymethyl)phenanthrene-1,2,4,5,7,8hexol (24). The same procedure as for the preparation of 23 was employed until the first flash chromatography, when 60 mg $(87 \mu \mathrm{~mol})$ of 19 and $348 \mu \mathrm{~mol}$ of a 1 M solution of BBr_{3} in $\mathrm{CH}_{2}-$ Cl_{2} were used. The product was dissolved in MeOH saturated with $\mathrm{NH}_{3}(15 \mathrm{~mL})$ and stirred at $50^{\circ} \mathrm{C}$ for 70 h . After solvent evaporation, the residuewas purified by column chromatography (Florisil, $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} \mathrm{1}: 2$), yielding 14 mg (51%) of a col orless sol id recrystallized from $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$: col orless prisms; mp $262-$ $264{ }^{\circ} \mathrm{C}$; ${ }^{1 \mathrm{H}}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 4.35(1 \mathrm{H}$, br d, J $=13.0$ Hz), 4.18 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.12-4.07(3 \mathrm{H}, \mathrm{m}), 4.10,3.66(2 \mathrm{H}, 2 \mathrm{~d}$, J $=11.7 \mathrm{~Hz}$), $3.96(1 \mathrm{H}, \mathrm{dd}$, J = 11.7, 3.4 Hz$), 2.41(2 \mathrm{H}, \mathrm{br}$ s), 2.12-1.98 ($3 \mathrm{H}, \mathrm{m}$), 1.82-1.59 ($6 \mathrm{H}, \mathrm{m}$); ${ }^{13} \mathrm{C}$ NMR (100.6 MHz , $\mathrm{D}_{2} \mathrm{O}$) $\delta 71.1,70.3,69.3,68.6,67.3,66.6,64.3,45.0,38.5,37.9$, 37.2, 34.8, 34.6, 24.4, 20.8.
(1RS,2RS,4RS,4aRS,4bRS,5RS,7RS,8SR,8aRS,10aRS)-5,8-Diacetoxyperhydro-10a-[[(4'-methoxybenzoyl)oxy]-methyl]-1,4-epoxyphenanthrene-2,7-diyl Bis(4'-methoxybenzoate) (25). A 1 M solution of BBr_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(468 \mu \mathrm{~L}, 468$ $\mu \mathrm{mol}$) was added to a stirred solution of $19(80 \mathrm{mg}, 117 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ cooled to $-78^{\circ} \mathrm{C}$. After the solution was stirred at $-50^{\circ} \mathrm{C}$ for 15 min , a saturated aqueous solution of NaHCO_{3} (20 mL) was added, and the mixture was stirred vigorously at 0 ${ }^{\circ} \mathrm{C}$ for 5 min . The organic layer was collected, and the aqueous layer was extracted with EtOAc (5 mL , four times). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, the solvent was evaporated, and the residue was taken up with anhydrous pyridine (3 mL). After addition of $\mathrm{Ac}_{2} \mathrm{O}(2 \mathrm{~mL})$ and DMAP (5 mg), the mixture was stirred at $20^{\circ} \mathrm{C}$ for 13 h . The solvent was evaporated and the residue purified by flash chromatography (silica gel, EtOAcllight petroleum 1:2, then 2:3, and finally 1:1), yielding 77 mg (84%) of a colorless oil that crystallized from EtOAc/light petroleum: colorless prisms; mp 211-212 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 70^{\circ} \mathrm{C}$) $\delta 8.22-8.18,8.03-7.96(6 \mathrm{H}, 2$ m), 6.77-6.69, 6.63-6.59 ($6 \mathrm{H}, 2 \mathrm{~m}$), $5.77(1 \mathrm{H}$, ddd, J $=7.3$, $3.6,2.3 \mathrm{~Hz}), 5.62(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=10.9,4.9,4.5 \mathrm{~Hz}), 5.36(1 \mathrm{H}, \mathrm{dd}$, $J=8.0,2.3 \mathrm{~Hz}), 5.33(1 \mathrm{H}$, ddd, $\mathrm{J}=8.3,4.2,3.8 \mathrm{~Hz}), 5.21,4.57$ $(2 \mathrm{H}, 2 \mathrm{~d}, \mathrm{~J}=11.2 \mathrm{~Hz}), 4.54(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}), 4.42(1 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=5.3 \mathrm{~Hz}), 3.33,3.32,3.25(9 \mathrm{H}, 3 \mathrm{~s}), 2.40(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=12.7$, 10.9, 5.2 Hz), 2.37-2.29 ($2 \mathrm{H}, \mathrm{m}$), 2.15 ($1 \mathrm{H}, \mathrm{ddd}$, J = 13.7, 7.3, 3.8 Hz), $2.00(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=13.7,8.3,3.6 \mathrm{~Hz}), 1.97,1.87(6 \mathrm{H}, 2$ s), $1.93-1.87(1 \mathrm{H}, \mathrm{m}), 1.79-1.67(2 \mathrm{H}, \mathrm{m}), 1.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.9$ $\mathrm{Hz}), 1.55(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.7,4.9 \mathrm{~Hz}), 1.54-1.50(1 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 70^{\circ} \mathrm{C}$) $\delta 170.2,170.1,166.6,166.4$, $165.9,164.6,164.4,164.3,132.6,132.5,132.4,124.1,123.8,123.4$, $114.7,114.5,114.4,85.7,84.2,75.8,73.5,73.4,68.8,67.1,55.5$, 55.4, 55.3, 50.0, 37.9, 35.5, 37.6, 31.1, 28.9, 20.8, 21.4, 21.0.
(1RS,2SR ,4SR ,4aRS,4bSR,5SR,7SR ,8RS,8aSR,10aSR)-5,8-Diacetoxyperhydro-10a-[[(4'-methoxybenzoyl)oxy]-methyl]-2,4-bis(methoxymethoxy)phenanthrene-1,7-diyl Bis(4'-methoxybenzoate) (26). A 1 M solution of BBr_{3} in CH_{2-} $\mathrm{Cl}_{2}(437 \mu \mathrm{~L}, 437 \mu \mathrm{~mol})$ was added to a stirred solution of 25 (77 $\mathrm{mg}, 109 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ cooled to $-18{ }^{\circ} \mathrm{C}$. After the solution was stirred at $-18^{\circ} \mathrm{C}$ for 30 min , a saturated aqueous solution of $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$ was added, and the mixture was stirred vigorously at $0^{\circ} \mathrm{C}$ for 5 min . The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL , four times). The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, the sol vent was evaporated, and the residue was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. After the residue was cooled to $0{ }^{\circ} \mathrm{C}$, (i-Pr) ${ }_{2} \mathrm{NEt}$ ($556 \mu \mathrm{~L}, 3.2 \mathrm{mmol}$) and $\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{Cl}(97 \mu \mathrm{~L}, 1.28 \mathrm{mmol})$ were added. The mixture was stirred at $20^{\circ} \mathrm{C}$ for 15 h . $\mathrm{MeOH}(1 \mathrm{~mL})$ was added, and
after $5 \mathrm{~min}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The solution was washed with 1 N aqueous HCl (15 mL , twice) and then with a saturated aqueous solution of NaHCO_{3} (15 mL , twice). Each aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL , twice). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, the solvent was evaporated, and the residue was purified by flash chromatography (silica gel, EtOAc/CH Cl_{2} 1:15), yielding 46 mg (47%) of a colorless viscous oil: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 70^{\circ} \mathrm{C}\right) \delta 8.23-8.19,8.15-$ 8.12 ($6 \mathrm{H}, 2 \mathrm{~m}$), 6.83-6.81, 6.76-6.70 ($6 \mathrm{H}, 2 \mathrm{~m}$), 5.77-5.76 (1 $\mathrm{H}, \mathrm{m}), 5.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.7 \mathrm{~Hz}), 5.66-5.62(2 \mathrm{H}, \mathrm{m}), 5.57,4.77$ $(2 \mathrm{H}, 2 \mathrm{~d}, \mathrm{~J}=11.7 \mathrm{~Hz}), 4.71,4.65(2 \mathrm{H}, 2 \mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}), 4.64-$ $4.58(1 \mathrm{H}, \mathrm{m}), 4.59,4.58(2 \mathrm{H}, 2 \mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}), 4.36-4.34(1 \mathrm{H}$, m), $3.33,3.32,3.31,3.30,3.23(15 \mathrm{H}, 5 \mathrm{~s}), 2.79-2.77(2 \mathrm{H}, \mathrm{m})$, 2.67-2.65 (1 H , m), 2.43-2.27 (3 H, m), 2.04-1.80 ($5 \mathrm{H}, \mathrm{m}$), 1.87, $1.79(6 \mathrm{H}, 2 \mathrm{~s})$; ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 70^{\circ} \mathrm{C}$) $\delta 170.1,169.3$, 166.3, 165.6, 165.3, 164.1, 164.0, 163.0, 132.1, 132.0, 123.8, 123.3, $114.3,114.2,114.1,96.7,95.9,74.9,74.0,73.6,73.4,67.2,66.9$, $55.5,55.4,55.0,54.9,43.1,39.8,37.3,33.3,32.3,31.8,26.9,22.3$, 21.1, 20.6.

Acknowledgment. This work was supported by the Swiss National ScienceF oundation, the F onds Herbette (Lausanne) and Hoffmann-La Roche (Basel).

Supporting Information Available: Further spectral data and elemental analyses for all of the compounds described in the Experimental Section. X-ray radiocrystallographic data on the crystal and molecular structure of compound 23 (14 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

J O962331T

[^0]: (1) Gonzàlez, A. G.; M artín, J . D.; Gonzàlez, B.; Ravelo, J. L.; Pérez, C.; Rafii, S.; Clardy, J. J. Chem. Soc., Chem. Commun. 1984, 669670.
 (2) Clardy, J.; Van Duyne, G.; Gallardo, A.; Manta, E.; Martín, J. D.; Pérez, C.; Pérez, R.; Ravelo, J. L.; Rodriguez, M. L.; Schulte, G. K. Tetrahedron Lett. 1987, 28, 6699-6700.
 (3) F or other related diterpenes having an erythroxan-type structure (cis,trans,trans, angular 4a-methyl substituent), see, e.g.: Abdel-K ader, M. S.; Omar, A. A.; Abdel-Salam, N. A.; Stermitz, F. R. Phytochemi stry 1993, 33, 718-720. Abdel-K ader, M. S.; Omar, A. A.; Abdel-Salam, N. A.; Stermitz, F. R. Ibid. 1994, 36, 1431-1433.
 (4) The absolute configuration of these compounds has not yet been established.
 (5) Meerpoel, L.; Vrahami, M.-M.; Ancerewicz, J .; Vogel, P. Tetrahedron Lett. 1994, 35, 111-114.
 (6) F attori, D.; Vogel, P. Tetrahedron 1992, 48, 10587-10602.
 (7) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 50, 4467-4470. Cassar, L. J. Organomet. Chem. 1975, 93, 253-257. Dieck, H. A.; Heck, F. R. Ibid. 1975, 93, 259-263. Cacchi, S. Synthesis 1986, 320-322.
 (8) Näf, F.; Decorzant, R.; Thommen, W.; Willhalm, B.; Ohloff, G. Helv. Chim. Acta 1975, 58, 1016-1037.

[^1]: (9) Pappo, R.; Allen, D. S., J r.; Lemieux, R. U.; J ohnson, W. S. J. Org. Chem. 1956, 21, 478-479.
 (10) For related examples see, e.g.: Kowarski, C. R.; Sarel, S. J . Org. Chem. 1973, 38, 117-119. Ogawa, S.; Uemura, M.; Fujita, T. Carbohydr. Res. 1988, 177, 213-221. Ogawa, S., Suzuki, M.; Tonegawa, T. Bull. Chem. Soc. J pn. 1988, 61, 1824-1826. Ogawa, S.; Takagaki, T. J. Org. Chem. 1985, 50, 2356-2359. Ogawa, S.; Yato, Y.; Nakamura, K.; Takata, M.; Takagaki, T. Carbohydr. Res. 1986, 148, 249-255. Ogawa, S.; I wasawa, Y.; N ose, T.; Suami, T.; Ohba, S.; Ito, M.; Saito, Y. J. Chem. Soc., Perkin Trans. 1 1985, 903-906. Ogawa, S.; Tsunoda, H. Liebigs Ann. Chem. 1992, 637-641. Ogawa, S.; Tsunoda, H.; Yoshikawa, M.; Uemura, M.; Orihara, M. Ibid. 1992, 629-636. Reynard, E.; Reymond, J.-L.; Vogel, P. Synlett 1991, 469471. Moritz, V.; Vogel, P. Tetrahedron Lett. 1992, 33, 5243-5244.
 (11) For related reactions, see, e.g.: Koreeda, M.; J ung, K.-Y.; Hirota, M. J. Am. Chem. Soc. 1990, 112, 7413-7414. J ones, J. B.; Francis, C. J. Can. J. Chem. 1984, 62, 2578-2582. Guindon, Y.; Therien, M.; Girard, Y.; Y oakim, C. J. Org. Chem. 1987, 52, 1680-1686. Harwood, L. M.; J ackson, B.; Prout, K.; Witt, F. J. Tetrahedron Lett. 1990, 31, 1885-1888. Allemann, S.; Vogel, P. Helv. Chim. Acta 1994, 77, 1-9.
 (12) Czernecki, S.; Georgoulis, C.; Provelenghiou, C. Tetrahedron Lett. 1976, 3535-3536.

[^2]: (13) The author has deposited atomic coordinates for this structure with the Cambridge Crystallographic Data Centre as supplementary publication No. CCDC-101. The coordinates can be obtained, upon request, from the Director, Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK.

[^3]: (14) Gagnaire, D.; Payo-Subiza, E. Bull. Soc. Chim. Fr. 1963, 26272631. Ramey, K. C.; Lini, D. C. J . Magn. Reson. 1970, 3, 94-102. Kienzle, F. Helv. Chim. Acta 1975, 58, 1180-1183. Mahaim, C.; Vogel, P. Ibid. 1982, 65, 866-886.

[^4]: (15) Vieira, E.; Vogel, P. Helv. Chim. Acta 1983, 66, 1865-1871. Reymond, J.-L.; Vogel, P. Tetrahedron: Asymmetry 1990, 1, 729-736. Saf, R.; Faber, K.; Penn, G.; Griengl, H. Tetrahedron 1988, 44, 389392. Ronan, B.; Kagan, H. B. Tetrahedron: Asymmetry 1991, 2, 7590. Corey, E. J.; Loh, T.-P. Tetrahedron Lett. 1993, 34, 3979-3982. Vogel, P.; Auberson, Y.; Bimwala, M.; De Guchteneere, E.; Vieira, E.; Wagner, J. In Trends in Synthetic Carbohydrate Chemistry; Horton, D., Hawkins, L. D., McGarvey, G. J., Eds.; ACS Symposium Series 386; American Chemical Society: Washington, D.C., 1989; p 197. Vogel, P.; Fattori, D.; Gasparini, F.; Le Drian, C. Synlett 1990, 173-185.
 (16) Cossy, J.; Ranaivosata, J.-L.; Bellosta, V.; Ancerewicz, J.; Ferritto, R.; Vogel, P. J. Org. Chem. 1995, 60, 8351-8359. Gasparini, F.; Vogel, P. Ibid. 1990, 55, 2451-2457.

